22 December 2022

Review of 2022 reviews

The winter solstice is behind us in the Northern Hemisphere, which means 2022 is rapidly drawing to a close. As we have done for the past decade, Practical Fragments will spend this last post of the year summarizing conferences and reviews.
 
The remarkable progress in vaccines against SARS-CoV-2 allowed the full return of in-person conferences, and it was nice to see folks at CHI’s Discovery on Target in Boston and Drug Discovery Chemistry in San Diego. Nearly twenty reviews of interest to this readership were published, and these are covered thematically.
 
Targets
Several reviews cover the use of FBLD to target antiviral and antibacterial targets. Sangeeta Tiwari and colleagues at University of Texas El Paso cover both in an open access Pharmaceuticals review, focusing on tuberculosis and HIV, which often afflict the same individuals, leading to worse outcomes. The paper includes several tables with chemical structures, though the fragment origins of some molecules are not apparent.
 
Tuberculosis is caused by Mycobacterium tuberculosis, but there are more than 170 known members of the Mycobacteriaceae family. In an open access Int J. Mol. Sci. paper, the Tiwari group describes fragment-based approaches against these bugs. In addition to multiple examples, the review provides summaries of fragment finding methods and some of the challenges the field faces.
 
Another organism, Pseudomonas aeruginosa, infects the lungs of people with cystic fibrosis. In an open access Front. Mol. Biosci. paper, Tom Blundell and collaborators at University of Cambridge summarize fragment-based campaigns against this organism and its enzymes. The authors focus on structure-guided methods and note that the work is “at an early stage” but encouraging.
 
Switching to mammalian targets, Katrin Rittinger and colleagues at The Francis Crick Institute review (open access) applications of FBLD for targeting the ubiquitin system in Front. Mol. Biosci. The paper includes a nice table summarizing 15 examples that includes target, enzyme class, fragment binding mode, detection methods, and chemical structures of the fragment hit and optimized compound where applicable. Many of these are covalent modifiers; more on that topic below.
 
Finally, Tarun Jha, Shovanlal Gayen, and collaborators at Jadavpur University discuss “recent trends in fragment-based anticancer drug design strategies” in Biochem. Pharm. In addition to case studies (with chemical structures) of FBLD approaches against 18 oncology targets, the review covers fragment libraries, screening methods, optimization, and challenges.
 
Methods
Many of the targets above are challenging, and it’s always nice to be able to assess how challenging a project might be at the outset. In Curr. Opin. Struct. Biol., Sandor Vajda and collaborators at Boston University and Stony Brook University discuss (open access) “mapping the binding sites of challenging drug targets.” This is a brief, readable account of computational methods to identify hot spots, including allosteric ones. The authors examine the various small-molecule binding sites on KRAS and conclude that, due to “limited druggability,” the “other G12 oncogenic mutants will be very challenging.” Perhaps, but not impossible, as researchers at Mirati demonstrated earlier this year with the (open access) publication of a low (or sub) nanomolar KRASG12D inhibitor.
 
Among experimental methods used in FBDD, NMR is a mainstay, as demonstrated by Luca Mureddu and Geerten Vuister (University of Leicester) in Front. Mol. Biosci. (open access). The paper covers methods, successes, and challenges, focusing on three compounds that reached the clinic: AZD3839, venetoclax, and S64315.
 
In contrast to NMR, dynamic combinatorial chemistry (DCC) and DNA-encoded libraries (DEL) are used less frequently in FBLD. In RSC Chem. Biol., Xiaoyu Li and collaborators at University of Hong Kong and Jining Medical University discuss “recent advances in DNA-encoded dynamic libraries.” This concise paper covers lots of ground and does not understate the challenges.
 
Libraries
“The importance of high-quality molecule libraries” is emphasized by Justin Bower and colleagues at the Beatson Institute in Mol. Oncol. This highly readable and wide-ranging open access review covers all aspects of library design and use and includes comparisons of some of the major commercial vendors. An important point is that the “hit rate does not define the success of a library as it is more important to identify ligand-efficient and chemically tractable start points.”
 
Thus, even though shapely fragments may have lower hit rates than more planar aromatic fragments, they may still be worth including – if you can make them. In Drug Discov. Today (open access), Peter O’Brien and collaborators at University of York and Vrije Universiteit Amsterdam review synthetic strategies behind 25 “3D” fragment libraries. The tabular summary showing all the scaffolds emphasizes that most of these libraries are modest in size, with the largest being 102 members. Chemists will particularly enjoy the multiple synthetic schemes. The authors note the importance of “fragment sociability” to facilitate SAR and elaboration.
 
Covalent fragments
Special libraries are required for covalent fragment-based drug discovery, the most notable feature being the “warhead” that reacts with the protein target. These are the focus of a chapter in Adv. Chem. Prot. by Péter Ábrányi-Balogh and György Keserű of the Hungarian Research Centre for Natural Sciences. The review includes a table containing more than 100 warheads with associated mechanisms and amino acid selectivity.
 
The “reactivity of covalent fragments and their role in fragment-based drug design” is the focus in an (open access) Pharmaceuticals review by Kirsten McAulay and colleagues at the Beatson Institute. This is a nice overview of the field and contains several case studies. The authors conclude that “striking a balance between reactivity, potency and selectivity is key to identifying potential candidates.”
 
“Advances in covalent drug discovery” are reviewed (open access) by Dan Nomura and colleagues at University of California Berkeley in Nat. Rev. Drug Disc. This is a highly readable and comprehensive overview of the field. The authors differentiate between “ligand-first” approaches, in which a covalent warhead is appended to a known binder (such as here) and “electrophile-first,” in which “the initial discovery process is rooted in finding a covalent ligand from the outset,” such as for KRASG12C inhibitors.
 
Another broad overview of covalent inhibitors is provided by Juswinder Singh (Ankaa Therapeutics) in J. Med. Chem. Jus is a pioneer in the field, having published the first targeted covalent inhibitor in 1997. Of 1673 small molecules approved as drugs by the US FDA, only about 7% are covalent, and it wasn’t until recently that these have been intensively pursued. Part of the reluctance has been concerns over toxicity, but the paper suggests that – at least among kinase inhibitors – covalent drugs may actually be safer, perhaps due to conjugation of glutathione to the warhead and rapid clearance rather than formation of reactive metabolites.
 
Other
Whether covalent or not, thermodynamics plays a fundamental role in protein-ligand interactions, and this is the topic of an (open access) review in Life by Conceição Minetti and David Remeta of the State University of New Jersey. The paper covers a lot of ground, including drug discovery approaches, metrics (such as LE, LLE, etc.), isothermal titration calorimetry, case studies, and more. Importantly, the authors acknowledge the many challenges of applying thermodynamics to drug discovery, some of which we highlighted here.
 
Thermodynamics explains the potency increases longed for when doing fragment-linking, the subject of two reviews. In Chem. Biol. Drug Des. Anthony Coyne and colleagues at University of Cambridge provide a broad overview, starting with the historical theoretical background and newer developments. The bulk of the paper surveys published examples of fragment linking, with structure-based methods (whether X-ray, NMR, or computational) separated from target-guided methods such as DCC.
 
The second review, published in Bioorg. Chem. by Junmei Peng and colleagues at University of South China, is broader in scope, encompassing not just FBLD but also linkers used in PROTACs and even antibody-drug conjugates. The paper is organized by chemical structure of the linker.
 
Finally, in J. Med. Chem., Peter Dragovich, Wolfgang Happ, and colleagues at Genentech and Roche examine “small-molecule lead-finding trends” at their organizations between 2009 and 2020. (Although Genentech is fully owned by Roche, its research organization operates independently.) Fragment-based approaches led to only a small fraction of chemical series at Genentech and none at Roche. The authors note that leads derived from public sources such as patent applications were often found and pursued earlier, and that “purposeful dedication” of resources to fragment approaches may be necessary. Another major source of leads at Genentech is in-licensing, and some of these are fragment-derived.
 
And that’s it for 2022, year three of COVID-19. Thanks for reading and special thanks for commenting. May the coming year bring health, peace, and significant scientific progress.

No comments: