24 August 2015

Fragment-Based Drug Discovery

This is the straight-to-the-point title of a new book published by the Royal Society of Chemistry, edited by Steven Howard (Astex) and Chris Abell (University of Cambridge). It is the second book on the topic published so far this year, and it is a testimony to the fecundity of the field that the two volumes have very little overlap.

After a brief forward by Harren Jhoti (Astex) and a preface by the editors, the book opens with two personal essays. The first, by me, is something of an apologia for Practical Fragments and the growing role of social media in science (and vice versa). If you’ve ever wondered how this blog got started or why it keeps going, this is where to find out. The second essay is by Martin Drysdale (Beatson Institute). Martin is a long-time practitioner of FBDD, dating back to his early days at Vernalis (when it was RiboTargets) and he tells a fun tale of “adventures and experiences.”

Chapter 1, by Chris Abell and Claudio Dagostin, is entitled “Different Flavours of Fragments.” With a broad overview of the field it makes a good introduction to the book. There are sections on fragment identification, including the idea of a screening cascade, as well as several case studies, some of which we’ve covered on Practical Fragments, including pantothenate synthetase, CYPs, RAD51, and riboswitches.

The next two chapters deal with two of the key fragment-finding methods. Chapter 2, by Tony Giannetti and collaborators at Genentech, GlaxoSmithKline, and SensiQ, covers surface plasmon resonance (SPR). This includes an extensive discussion of data processing and analysis, which is critical for improving the efficiency of the technique. Competition studies are also described, as are advances in hardware, notably those from SensiQ. This is a good complement to Tony's 2011 chapter.

Chapter 3, by Isabelle Krimm (Université de Lyon), provides a thorough description of NMR methods, both ligand-based (STD, WaterLOGSY, ILOE, etc) and protein-based (mostly HSQC). The chapter does a nice job of describing techniques in terms a non-specialist can understand while also providing practical tips on matters such as optimal protein size and concentration.

Chapter 4, by Ian Wall and colleagues at GlaxoSmithKline, provides an overview of FBLD from the viewpoint of computational chemists. The chapter includes some interesting tidbits, such as the observation that fragment hits that yield crystal structures tend to be less lipophilic but also contain a smaller fraction of sp3 atoms and more aromatic rings. The researchers note that the current fashion for “3D” fragments is yet to be experimentally validated. They also include accessible sections on modeling, druggability, and integrating fragment information into a broader medicinal chemistry program.

The remaining chapters focus on specific types of targets. Chapter 5, by Miles Congreve and Robert Cooke (both at Heptares) is devoted to G protein-coupled receptors (GPCRs). This includes descriptions of how to screen fragments against these membrane proteins using SPR, TINS, CE, thermal melts, and competition binding. It also includes a detailed case study of their β1 adrenergic receptor work (summarized here). Congreve and Cooke assert that, although many of the GPCR targets screened to date have been highly ligandable, technical challenges only now being addressed have caused this area of research to lag about a decade behind other targets. They predict a bright future.

Rod Hubbard (Vernalis and University of York) turns to protein-protein interactions in Chapter 6. After describing why these tend to be more challenging than most enzymes and covering some of the methods for finding and advancing fragments, he then presents several case studies, including FKBP (one of the first targets screened using SAR by NMR), Bcl-2 family members (including Bcl-xL and Mcl-1), Ras, and BRCA2/RAD51. He concludes with a nice section on “general lessons,” which boils down to “patience, pragmatism, and integration.” As Teddy recently noted, this can lead to substantial rewards.

Allosteric ligands have potential advantages in terms of selectivity and addressing otherwise challenging targets, and in Chapter 7 Steven Howard (Astex) describes how fragments can play a role here. This includes how to establish functionality of putative allosteric binders, as well as case studies such as HIV-1 RT, FPPS, and HCV NS3. Astex researchers have recently stated that they find on average more than two ligand binding sites per protein, and this chapter includes a table listing these (including 5 binding sites each on bPKA-PKB and PKM2).

The longest chapter, by Christina Spry (Australian National University) and Anthony Coyne (University of Cambridge) describes fragment-based discovery of antibacterial compounds. After discussing some of the challenges, the authors report several in depth case studies including DNA gyrase, DNA ligase, CTX-M, AmpC, CYP121, and pantothenate synthetase, among others. At least one fragment-derived antibacterial agent entered the clinic; hopefully more will follow.

Chapter 9, by Iwan de Esch and colleagues at VU University Amsterdam, focuses on acetylcholine-binding proteins (AChBPs), both as surrogates for membrane-bound acetylcholine receptors and as well-behaved model proteins on which to hone techniques (see for example here, here, and here). Since AChBPs have evolved to bind fragment-sized acetylcholine, these proteins can bind tightly to small ligands; 14-atom epibatidine binds with picomolar affinity, for example, with a ligand efficiency approaching 1 kcal mol-1 atom-1.

And Chapter 10, by Chun-wa Chung and Paul Bamborough at GlaxoSmithKline, concisely covers epigenetics. Bromodomains are well-represented, including a table of ten examples (see for example here, here, here, here, here, and here). Happily, although some of these projects started from similar or identical fragments, the final molecules are quite divergent. However, the authors note that much less has been published on histone-modifying enzymes, such as demethylases and deacetylases, perhaps reflecting the challenges of achieving specificity with what are often metalloenzymes.

Finally, this is the 500th post since Teddy founded Practical Fragments way back in the summer of 2008. Thanks for reading, and special thanks for commenting!

1 comment:

Anders Friberg said...

Thanks for writing guys! Congratulations on the 500th post!