10 February 2025

Flatland: still a nice place to be

In 2009 we highlighted a paper reporting that approved drugs have a higher fraction of sp3-hybridized carbon atoms than discovery-phase compounds. Perhaps focusing on molecules with a high Fsp3, the ratio of sp3-hybridzed carbons to total carbons, would lead to greater success. Or not: a new analysis in Nat. Rev. Chem. by Ian Churcher (Janus Drug Discovery), Stuart Newbold, and Christopher Murray (both at Astex) finds that the relationship has not held up.
 
The 2009 “Escape from Flatland” paper was widely discussed at conferences and has been cited more than 3000 times. But according to the authors of the new study, most of these citations are from papers describing new synthetic methodologies rather than from papers discussing medicinal chemistry.
 
And not all the attention has been positive. As we noted in 2013, Pete Kenny and Carlos Montanari reanalyzed the data and found that an apparent correlation between Fsp3 and solubility disappeared when plotting all discrete data points instead of binned data.
 
More recently, we highlighted a paper that found no significant difference between the shapeliness of drugs, as assessed by their principal moment of inertia (PMI), and the shapeliness of small molecules in the ZINC database.
 
The new paper looks at Fsp3 values for drugs approved during various time periods. Among 980 drugs approved up to 2009, the average Fsp3 was 0.458. However, of the 431 drugs approved after 2009, the average Fsp3 has dropped to 0.392. The researchers speculate that this (statistically significant) decrease may be due to an increase in the number of kinase inhibitors, which are usually highly aromatic, as well as an increase in the use of metal-catalyzed cross coupling reactions.
 
In my analysis of the 2009 paper, I asked whether higher Fsp3 ratios would lead to lower hit rates, and indeed this seems to be the case, as shown in a paper we discussed in 2020. Thus, if you pursue difficult targets, you may increase your chances of finding hits by screening molecules with lower Fsp3 ratios. Also, multiple studies, including one published just last month, have found no correlation between the shapeliness of a fragment (as defined by deviation from planarity, or DFP) and the shapeliness of the resulting lead, so there appears to be no penalty to starting with a flattish fragment. 
 
The researchers conclude that their “analysis of drug development trends over the last 15 years suggests that Fsp3 may not have been a useful metric to optimize.” Importantly, the supplementary information includes a list of >1400 approved drugs and >1500 investigational drugs along with associated properties, so you can do your own analyses.
 
In the end, generalizations will only get you so far, and may even lead you astray. At least for now, there are few shortcuts in the long slog of experimental studies necessary to discover a drug.

2 comments:

Anonymous said...

I agree with the authors' speculation that the overall decrease is "due to an increase in the number of kinase inhibitors", which are flat. The appropriate 3D-ness of a screening library depends on the target. For a protein-protein interaction target, I believe that increased 3D-ness will increase the odds of finding good leads (although it may decrease the hit rate. I'd rather have good leads than a high hit rate.)

Lewis Martin said...

Thanks for the summary dan. One other aspect I hear in favour of chirality is selectivity - presumably chiral molecules have more complex shapes and thus fewer off targets, so one might willingly pay the cost of a lower hit rate. For kinases in oncology, perhaps off-targets are (relatively) of less concern given the urgency or the treatment, so 3d-ness doesnt matter