17 January 2022

An epidemic of aggregators, and suggestions for cures

COVID-19 has been with us for over two years now. While the human effects have been unquestionably negative, for science it has been the best of times and the worst of times. The development of remarkably effective vaccines in less than a year stands as a triumph of twenty-first century medicine, as does the discovery of nirmatrelvir, a covalent inhibitor of the SARS-CoV-2 main protease Mpro (also called 3CL-Pro). But there is a lot of junk-science out there too, as illuminated in a recent J. Med. Chem. paper by Brian Shoichet and colleagues at University of California San Francisco.
 
Before vaccines and custom-built drugs were developed, labs everywhere started screening all the compounds they could get against targets relevant for COVID-19. The most popular molecules to test were approved drugs, the idea being that if any of these turned out to be effective they could immediately be put to use.
 
One of the most common artifacts in screening is caused by aggregation: small molecules can form colloids that non-specifically inhibit a variety of different assays. This phenomenon has been understood for more than two decades; Practical Fragments wrote about it back in 2009. Unfortunately, many labs ignore it.
 
The UCSF lab investigated 56 drugs that had been reported in 12 papers as inhibitors against two targets relevant for SARS-CoV-2, including 3CL-Pro. The molecules were characterized in multiple assays: particle formation and clean autocorrelation curves in dynamic light scattering (DLS), inhibition of an aggregation-sensitive enzyme in the absence of detergent but no inhibition in the presence of detergent, and a high Hill slope in the dose-response curve. Nineteen molecules, four of them fragment-sized, were positive in most of these assays, clearly indicating aggregation. (Interestingly, several of these gave reasonable Hill slopes (<1.4), and the researchers suggest this be a “soft criterion.”) Another 14 molecules gave more ambiguous results, such as forming particles by DLS but not inhibiting the sentinel enzyme.
 
OK, so maybe the molecules are aggregators, but perhaps they also act legitimately? Unfortunately, of the 12 drugs reported in the literature to inhibit 3CL-Pro, only two inhibited the enzyme in the presence of detergent, and one of these was five-fold less potent than reported. And as the researchers point out, detergent is not a magic elixir, and sometimes only right-shifts the onset of aggregation. Moreover, of the 19 molecules conclusively found to be aggregators, detergent was not included for 15 of them in the original publications. Brian may be too polite to write this, but channeling my inner Teddy, I would argue that the authors are negligent for failing to test for aggregation, as are the editors and reviewers who allowed these papers to be published.
 
And the problem is not confined to the COVID-19 literature. The researchers examined a commercial library of 2336 FDA-approved drugs, 73 of which are known aggregators. Another 356 were flagged in the very useful Aggregation Advisor tool (see here), and 6 of 15 experimentally evaluated tested positive in all the aggregation assays.
 
How do you avoid being misled by these artifacts? An extensive suite of tools for assessing aggregation is provided in a recent Nat. Protoc. paper by Steven LaPlante and colleagues at Université du Québec and NMX. The procedures are described in sufficient detail that they “can be easily performed by graduate students and even undergraduate students.”
 
Most of the focus is on various NMR techniques, such as one we wrote about here. The easiest is an NMR dilution assay, in which a 20 mM solution of a compound in DMSO is serially diluted into aqueous buffer at concentrations from 200 to 12 µM. If the number, shape, shift, or intensities of the NMR resonances changes, aggregation is likely.
 
Another assay involves testing compounds in the absence and presence of various detergents, including NP40, Triton, SDS, CHAPS, Tween 20, and Tween 80. Again, changes in the NMR spectra suggest aggregation.
 
The researchers note that “no one technique can detect all the types of aggregates that exist; thus, a combination of strategies is necessary.” Indeed, the various techniques can distinguish different types of aggregates which can vary in size and polydispersity. On a lemons-to-lemonade note, these “nano-entities” might even be useful for “drug delivery, anti-aggregates, cell penetrators and bioavailability enhancers.”
 
We live in the age of wisdom and the age of foolishness. As scientists – and as people – it is our responsibility to aspire to the former by being aware of “unknown knowns,” such as aggregation. And perhaps, by even taking advantage of the weird phenomena that can occur with small molecules in water.

1 comment:

Christophe said...

It is time for drug discovery journals to REQUIRE for each discovered inhibitor
to provide the tests recommended by Shoichet. These results could be put in the supplementary materials. I hope the editorial boards of J Med Chem and the likes are listening.