08 December 2025

Surprise – a covalent histidine-targeting PDE3B inhibitor

Earlier this year I wrote about archiving crystallographic fragment data, and indeed a meeting is planned for early next year to establish guidelines. A new paper in J. Med. Chem. by Samuel Eaton and David Christianson at University of Pennsylvania illustrates why this is important.
 
The story starts with a paper published in 2024, also in J. Med. Chem., by Ann Rowley, Gang Yao, and collaborators at GSK and 23andMe. They were interested in finding inhibitors of PDE3B, a cyclic nucleotide phosphodiesterase that has been implicated in metabolic disease. However, this enzyme has a closely related counterpart significantly expressed in cardiac tissue: PDE3A, with 95% amino acid identity near the active site. So the researchers sought an inhibitor highly selective for PDE3B over PDE3A.
 
A DNA-encoded library (DEL) screen of 1.9 trillion(!) molecules was screened against both PDE3B and PDE3A. Hits were resynthesized without the DNA and tested in activity assays, leading to several chemical series, only one of which was selective for PDE3B. A key feature of this series was a boronic acid moiety, which was essential for activity. Optimization led to compounds such as GSK4394835A, with high nanomolar activity against PDE3B and >20-fold selectivity against PDE3A. The GSK researchers deposited a crystal structure of this molecule in the protein data bank (PDB), along with the structure factor amplitudes. It showed the boronic acid making non-covalent interactions with side-chain residues as well as the catalytic magnesium atoms and water molecules.
 
Further optimization at GSK led to compounds with as much as 300-fold selectivity for PDE3B, but like GSK4394835A, these were only high nanomolar inhibitors. The researchers could further improve potency, but this came at the expense of selectivity. Cell activity was modest at best, and the researchers noted that “the boronic acid is, in general, a challenge for development of an orally bioavailable drug.”
 
This is where the University of Pennsylvania researchers take up the story. As their paper points out, several drugs do contain boron, most notably bortezomib, which forms a covalent adduct with a threonine in the proteasome. When Eaton and Christianson took a closer look at the PDB entry showing GSK4394835A bound to PDE3B, they “noticed unusual features such as extra density around the boron atom of GSK4394835A, steric clashes between the boronic acid moiety and H737, and aberrant refinement statistics… from ideal bond lengths.” Upon re-refinement, they found that the boronic acid in fact makes a covalent bond with histidine 737. The structure explains why the boronic acid moiety was essential for activity, and the new paper suggest that other covalent warheads could potentially be used in place of the boronic acid. (Eaton and Christianson write that they contacted the GSK researchers in February of 2024, but it is not clear whether they heard back.)
 
This is a nice correction of the literature and a reminder not to take crystal structures at face value. The beauty of the PDB is that, with the experimental data deposited, the new researchers were enabled to re-refine the data even without input from the original authors.
 
As we’ve previously discussed, this example is not the only misleading crystal structure in the PDB. Many fragment structures have lower occupancy and more ambiguous electron density and would be even more prone to misinterpretation. As the community moves to establish guidelines for depositing fragment structures, it will be important to provide access to the raw data to facilitate this type of reanalysis.

No comments: