15 April 2024

Detailing hot spots with atomic consensus sites

Practical Fragments has written frequently about hot spots, regions on proteins that are predisposed to bind ligands such as drugs. Determining whether a protein has a hot spot can help prioritize a target for screening, and one of the more established computational approaches to do so is FTMap, which we wrote about most recently just a couple months ago.
 
While FTMap can tell you whether a protein has one or more hot spots, it provides few further details, such as which regions might prefer a hydrogen bond donor or acceptor. This has now been addressed in a new J. Chem. Inf. Mod. paper by Sandor Vajda and collaborators at Boston University, Stony Brook University, and Acpharis. (Diane Joseph-McCarthy presented some of this work at the CHI DDC conference earlier this month.)
 
The original version of FTMap started with a collection of 16 very small molecule probes: these were docked all over a protein, with hot spots being identified as consensus sites where many probes bound. To get more information about each hot spot, the researchers have extended the method – now called E-FTMap – by increasing the number of probes to 119 covering key functional groups. For example, whereas FTMap included dimethyl ether as a probe, E-FTMap also includes 2-methoxypropane, 2-methoxy-2-methylpropane, and tetrahydropyran. If all these probes bind with the oxygen in the same part of the hot spot, this suggests a predilection for a hydrogen bond acceptor, and also provides information about nearby hydrophobic contacts.
 
By using a sufficiently diverse group of virtual probes, E-FTMap is able to more finely detail hot spots, tallying the “atomic consensus sites” within them. This is reminiscent of an approach we wrote about several years ago, though that method used just three different probes.
 
To benchmark E-FTMap, the researchers took 109 fragment-to-lead pairs with published crystallographic information and assessed whether the program could identify interactions that had been experimentally observed. The results were encouraging and far superior to the original version of FTMap. The highest ranked atomic consensus sites generally overlapped with appropriate atoms in fragments and leads. Interestingly, the results for fragments were better than those for leads, and the researchers suggest this is because the fragment “core is responsible for the bulk of the binding free energy in a ligand and that larger ligands bind by forming additional interactions at weaker hot spots that surround the fragment binding site.”
 
Next, E-FTMap was tested against five proteins for which between 31 and 353 fragment-bound crystal structures were available. Here too the program was broadly successful, though some fragments bound regions of the protein that E-FTMap overlooked, particularly in cases where there were conformational changes. This is not surprising given that the program assumes the protein remains rigid. (Other computational approaches such as SWISH, which we wrote about here, are starting to account for protein flexibility.)
 
E-FTMap looks qualitatively at specific atomic interactions, and one question I had was how well the atomic consensus sites matched up with binding affinities of known fragments; perhaps some crystallographically identified fragments bind so weakly one would not expect to find them computationally, as we discussed here and here. This hypothesis might be tested by focusing on comparisons with experimentally characterized fragments with the highest ligand efficiencies.
 
Also, I was struck by the fact that the virtual probes in E-FTMap are roughly the size of MiniFrags or MicroFrags, and I couldn’t help but wonder how well the atomic consensus sites from the virtual screens would correlate with the binding modes of these tiniest of fragments.
 
One nice feature of E-FTMap is that it can be accessed through a simple web server, so if you’re interested in these and other questions you can test it for yourself. If you do, please share your experiences.

No comments: