Last week we discussed how
soaking crystals in high concentrations of fragments could identify useful
molecules. Indeed, last month’s Drug Discovery Chemistry conference featured a
talk by Tom Davies (Astex) illustrating the power of this approach. In a recent
paper in J. Med. Chem., Tom, Jeffrey
Kerns (GlaxoSmithKline), and their collaborators provide the full story.
The researchers were interested
in the protein KEAP1, which binds to and blocks the activity of the
transcription factor NRF2. Small electrophilic molecules covalently react with
KEAP1, causing NRF2 to dissociate and upregulate various cytoprotective genes,
which could be useful for a variety of diseases. Indeed, this is at least
partly how the approved drug dimethyl fumarate seems to work. However, dimethyl
fumarate is quite reactive; a more specific molecule could have a
better therapeutic profile, and would certainly be useful for probing the
complex biology. With this in mind, the researchers sought a non-covalent
inhibitor.
NRF2 interacts with a bowl-shaped
“Kelch domain” of KEAP1 largely through electrostatic interactions. Thus, not
only is this a challenging protein-protein interaction, coming up with a
cell-permeable molecule is all the more difficult. The researchers soaked crystals
of the Kelch domain against 330 fragments overnight at concentrations of 5-50
mM. Fragments were observed binding in three adjacent hot-spots, and although
no functional activity could be detected, the binding modes suggested a path
forward.
Growing from fragment 1 toward a
hot-spot occupied by an aromatic fragment (magenta below) led to compound 4,
with detectable activity in a fluorescence-polarization assay as well as clear binding
in an isothermal titration calorimetry (ITC) experiment. Growing compound 4 toward
another hot-spot occupied by a sulfonamide-containing fragment (green below)
led to the sub-micromolar compound 6, and further optimization resulted in the
low nanomolar compound 7. As is often (but not always) the case, the fragment
portion of the final molecule binds in virtually the same position as the
initial fragment 1 (blue).
Comparison with the structure of
the NRF2 peptide reveals that the carboxylic acid in compound 7 binds in a very
similar fashion to a glutamate residue in the peptide, and some of the other
peptide contacts are also mirrored, but with very different moieties.
Importantly, compound 7 has only a single negative charge, balanced
lipophilicity, and fills the binding pocket more effectively than the peptide.
These properties translate to good biological activity in multiple different
cell-based assays, where the compound causes NRF2 translocation to the nucleus,
upregulates appropriate gene expression, and prevents glutathione depletion
when cells are treated with an organic peroxide. Although the pharmacokinetics
have yet to be optimized, it also shows encouraging activity in a rat model of ozone
exposure. Finally, it is reasonably selective in a panel of 49
undesirable off-target proteins. All these properties make this at least an
excellent chemical probe.
No comments:
Post a Comment