15 October 2018

FBLD 2018

Ten years ago, Vicki Nienaber (Zenobia) enlisted a small group of fellow enthusiasts to help her organize an independent fragment-based lead discovery conference in San Diego. That event was so successful that it was repeated in York in 2009, Philadelphia in 2010, San Francisco in 2012, Basel in 2014, and Cambridge (USA) in 2016. Last week, to celebrate its first decade, Derek Cole (Takeda), Rod Hubbard (University of York) and Chris Smith (COI) brought FBLD 2018 back to San Diego, along with some 200 fragment fans. With around 30 talks, more than 40 posters, and nearly 20 exhibitors, I won’t attempt to present a comprehensive overview, but just focus on broad themes.

Success Stories
I estimate that, in 2008, 14 fragment-based programs had entered the clinic, none of which had advanced beyond phase 2. That list has now grown to more than 40, so naturally success stories were a focus.

Andy Bell (Exscientia) discussed NMT inhibitors for malaria and the common cold (see here); the AI-driven approach took < 500 molecules to get to molecules with animal efficacy. Steve Woodhead (Takeda) revealed potent inhibitors of TBK1, a kinase involved in the innate immune response. It took just three months to go from a fragment hit to an animal-active lead, though unfortunately that molecule also showed apparent on-target toxicity. And Rosa María Rodríguez Sarmiento (Roche) described the discovery of COMT inhibitors (see here).

Mary Harner (BMS) described the discovery of sub-micromolar KAT II inhibitors in just a few months, enabled by parallel chemistry and the synthesis of 833 compounds. Several series turned out to be aggregators, and BMS has instituted a routine β-lactamase screen (an enzyme particularly sensitive to aggregators) to catch these early.

Keith McDaniel (AbbVie) described the discovery of the BET-family bromodomain inhibitor ABBV-075. This program also made rapid progress: just six months from the initial fragment hit, although the team did spend another year trying to find better molecules. This effort eventually paid off, as the same fragment has now led to a BD2-selective molecule, ABBV-744, that has recently entered the clinic.

And Paul Sprengeler (eFFECTOR) described the discovery of eFT508. This too was a rapid success: just 1 year and 170 compounds, enabled by 30 co-crystal structures, and in the end a dozen molecules competing for candidacy.

Notice that many of these projects moved quickly. Feel free to send this summary to anyone who worries that fragment programs move too slowly to be practical.

Technologies
Technologies have always had a starring role in FBLD conferences, and this one was no exception. Ben Cravatt (Scripps) discussed his fragment-based target discovery methods (see here and here). As I speculated recently, he is now using these approaches to discover new protein degraders. And his "fully functionalized fragments" are being adopted by others, as described in a poster by Emma Grant and collaborators at GlaxoSmithKline and University of Strathclyde.

Surface plasmon resonance (SPR) was used routinely by many of the speakers, but there is plenty of room for innovation. John Quinn (Genentech) described how to extend kinetic measurements to the very fast and the very slow. John also noted that gathering kinetic data earlier to deprioritize series with slow on-rates may be wise. And for those who wonder about the limits of detection for SPR, John measured the affinity of imidazole for NTA: just 13.6 mM!

Miles Congreve (Sosei Heptares) described multiple methods applied to GPCR targets along with a number of success stories. He also noted that, in the PAR2 program we mentioned recently, fragments were able to identify a buried pocket that could not be found using DNA-encoded libraries of several billion members, presumably because the pocket would not be accessible to a DNA-bound ligand. Interestingly, this pocket could be detected computationally using FTMap, as shown in a poster presented by Amanda Wakefield (Boston University).

Pedro Serrano (Takeda) described a variety of biophysical methods applied to GPCRs, the most stunning of which is an SPR microscope capable of performing kinetic binding assays on whole cells. He has tested this Biosensing Instrument on four different GPCRs, and although there are technical challenges, the data seem usable.

But the light shone most brightly on crystallography, illuminated by Stephen Burley (Protein Data Bank) among others. In order to justify continued public funding and free access (yes, there were suggestions to put the PDB behind a paywall), the PDB was asked to demonstrate its usefulness to society. Their analysis found that of the 210 new molecular entities (NMEs) approved by the FDA from 2010 through 2016, 184 had PDB entries for the target and/or the NME – for a total of 5914 structures, 95% of which were crystallographic. Most of these structures had been deposited at least 10 years before the drug was approved, so in many cases they probably played an important role.

John Barker described how Evotec has jumped into high-throughput screening by crystallography in a collaboration with the Diamond Light Source, which is now capable of doing 700 soaks per day. They have run 10 screens over the past 18 months with a small library of 320 fragments, with hit rates typically around 8%.

We have written about how high concentrations can improve success in crystal soaking experiments, and both Chris Murray and Dominic Tisi of Astex described how they’ve taken this to an extreme: 1 M soaks, with the fragment dissolved directly in the soaking solutions. Obviously this requires highly soluble fragments, so they’ve built a library of 81 “MiniFrags” having on average just 6.4 non-hydrogen atoms. They have tested these against five targets that diffract to high resolution and have found impressively high hit rates of 20-60%, compared to the 2-20% in the original 100 mM soaks for the same targets. Some of the sites are exploited by previously reported inhibitors or substrates, while others are new. And while the “universal fragment” 4-bromopyrazole did well, 1,2,3-triazole did even better – binding to all five targets in a total of 22 sites.

Crystallographers should not become complacent. Gabe Lander (Scripps) gave an update on cryo-EM, which we’ve written about here. The number of cryo-EM structures deposited in the PDB eclipsed those from NMR in 2016, and resolution continues to improve, with the current (as of late September) record at 1.56 Å. Still, the technique is not nearly as fast as crystallography: best case is 8 hours from data collection to refinement, although Gabe did think that 10 structures per day would be possible within the next few years. And Chris Murray noted that, if present trends continue, “we’ll all be doing cryo-EM in five years’ time.” Backing this up, he showed what I suspect may be the first clear density map of a fragment bound to a test protein.

This was the last major fragment event of the year, but next year’s calendar is already shaping up nicely. And mark your calendar for September 2020, when FBLD 2020 will move to the original Cambridge (UK).

06 October 2018

Fragments in the clinic: 2018 edition

To celebrate FBLD 2018, we're updating the list of FBLD-derived drugs. The current list contains 40 molecules - 25% more than the last compilation two years ago. As always, this table includes compounds whether or not they are still in development (indeed, some of the companies no longer even exist). Drugs reported as still active in clinicaltrials.gov, company websites, or other sources are in bold, and those that have been discussed on Practical Fragments are hyperlinked to the most relevant post.


DrugCompanyTarget
Approved!

VemurafenibPlexxikonB-Raf(V600E)
VenetoclaxAbbVie/GenentechSelective Bcl-2
Phase 3

AsciminibNovartisBcr-Abl
ErdafitinibJ&J/AstexFGFR1-4
LanabecestatAstraZeneca/Lilly/AstexBACE1
PLX3397PlexxikonCSF1R, KIT
VerubecestatMerckBACE1
Phase 2

AT7519AstexCDK1,2,4,5,9
AT9283 AstexAurora, JAK2
AUY-922Vernalis/NovartisHSP90
AZD5363AstraZeneca/Astex/CR-UKAKT
CPI-0610ConstellationBET
DG-051deCODELTA4H
eFT508eFFECTORMNK1/2
IndeglitazarPlexxikonpan-PPAR agonist
LY2886721LillyBACE1
LY517717Lilly/ProthericsFXa
Navitoclax (ABT-263)AbbottBcl-2/Bcl-xL
OnalespibAstexHSP90
PF-06650833PfizerIRAK4
PF-06835919PfizerKHK
Phase 1

ABT-518AbbottMMP-2 & 9
ABT-737AbbottBcl-2/Bcl-xL
ASTX029AstexERK1,2
ASTX660AstexXIAP/cIAP1
AT13148AstexAKT, p70S6K, ROCK
AZD3839AstraZenecaBACE1
AZD5099AstraZenecaBacterial topoisomerase II
BI 691751Boehringer IngelheimLTA4H
ETC-206D3MNK1/2
GDC-0994Genentech/ArrayERK2
IC-776Lilly/ICOSLFA-1
LP-261LocusTubulin
LY2811376LillyBACE1
MAK683NovartisPRC2 EED
MivebresibAbbVieBRD2-4
PLX5568Plexxikonkinase
SGX-393SGXBCR-ABL
SGX-523SGXMet
SNS-314SunesisAurora

I have no doubt that this list is incomplete, particularly in Phase 1. If you know of any others (and can mention them) please leave a comment.

01 October 2018

Sixteenth Annual Discovery on Target

CHI’s Discovery on Target took place in Boston last week. With >1300 attendees from over two dozen countries, this is the older, larger cousin of the San Diego DDC meeting; at some points ten tracks were running simultaneously. Although more heavily focused on biology, there were still plenty of talks of interest to fragment folks.

Michael Shultz (Novartis) provocatively asked “do we need to change the definition of drug-like properties?” Long-time readers will recall that his earlier papers on ligand efficiency led to considerable debate, which seems to have been settled to everyone’s satisfaction with the exception of Dr. Saysno.

His new study, which has just published in J. Med. Chem., analyzes the molecular properties of all 750 oral drugs approved in the US between 1900 and 2017. Contrary to what strict rule of five advocates might expect, the molecular weight has increased over the past couple decades, as has the number of hydrogen bond acceptors. In contrast, the number of hydrogen bond donors (#HBD) has remained constant, suggesting that this may be more important for oral bioavailability. (Indeed, #HBD is the only Lipinski rule not broken by venetoclax.) Although Shultz did not examine “three dimensionality,” he laudably includes all the raw data – including SMILES – in the supporting information. This will be a useful resource for data-driven debates.

Molecular properties are carefully considered by Ashley Adams, who discussed the four fragment libraries used at AbbVie. The first is a 4000-member “rule of three” compliant library. For tougher targets, a 9000-member Ro3.5 library is available, as is a specialized fluorine library for 19F NMR (2000 members) and a 1000-member “biophysics” library, in which all compounds are less than 200 Da. Fragment optimization is often challenging, and since the C-H bond is most common but perhaps least explored, the AbbVie database is annotated with references on C-H bond activation relevant to each fragment.

Anil Padyana spoke about the metabolic enzymes being targeted at Agios. As we mentioned recently, these are very difficult targets, so the researchers often use parallel (as opposed to nested) screening using different techniques to minimize false negatives. Anil also described an interesting SPR assay in which fragments were introduced to the protein after the addition of an activating substrate.

High-quality protein constructs are essential for any fragment screen, and Jan Schultz described ZoBio’s technology for generating these. The company’s “protein domain trapping” approach entails high-throughput generation and screening of tens or hundreds of thousands of truncations of a given protein and rapidly selecting stable, high-expressing, and active variants.

Trevor Perrior mentioned that Domainex has a similar technology, which has been able to produce soluble protein domains in 90% of its attempts. Trevor also described a separate project in which a 656-fragment compound library was screened using SPR against the enzyme RAS. They found fragments that bind in a previously discovered site but, unlike the earlier work, the Domainex researchers were able to optimize these to nanomolar inhibitors.

Another success story was presented by Dean Brown (AstraZeneca), who described a collaboration with Heptares to discover inhibitors of protease-activated receptor 2 (PAR2). As the name suggests, this GPCR is activated when a protease cleaves the N-terminus, allowing the remaining N-terminal residues to fold back and activate the GPCR. The researchers used a stabilized form of PAR2 in an SPR screen of 4000 fragments and obtained >100 binders in multiple series. This led to AZ8838, which blocks signaling by binding in an allosteric pocket. It also has a slow off-rate, which is often an attractive feature – particularly in the context of intramolecular activation.

A number of talks were focused on protein degraders such as PROTACs (PROteolysis-TArgeting Chimeras). These are generally two-part molecules connected by a linker: one part binds to a target of interest, while the other engages the cellular degradation machinery to destroy the target. As Shanique Alabi, a graduate student in Craig Crews's lab at Yale demonstrated, the molecules are catalytic – a single PROTAC molecule can cause the destruction of multiple copies of a target protein. This “event-driven” pharmacology is thus different from most historical drugs, which are “occupancy-driven.” Is there a role for fragments?

One of the strengths of FBLD is that if a ligandable site exists, it can be found. As Astex demonstrated, the majority of proteins seem to have secondary sites, away from the active site. Although some of these may be allosteric, others probably have no functional activity, particularly in the case of protein-protein interactions where secondary sites may be located some distance from the interface. The power of degraders is that non-functional sites can be made functional. The power of FBLD is that it can find small-molecule binding sites, which could then be used as anchoring sites for one side of a degrader. Watch this space!