03 September 2018

From generic fragment to selective BET-family BD2 inhibitor

Fragments have been a rich source of leads against bromodomain-containing proteins, epigenetic readers that recognize acetylated lysine residues and are implicated in a variety of diseases. The four members of the BET family in particular have been heavily explored. Each of these proteins actually contains two separate bromodomains, called BD1 and BD2, and most reported inhibitors hit both of them more or less equally. To follow up on some intriguing biological hints that this may not be necessary, Robert Law and collaborators at GlaxoSmithKline and University of Strathclyde pursued selective BD2 inhibitors, which they describe in J. Med. Chem.

The researchers started with a fragment they first reported six years ago, and which has been used by Forma as the starting point for one of their own programs. Although fragment 10 is equipotent against BD1 and BD2 of BRD4, growing led to compound 12, with an encouraging 60-fold selectivity for BD2 (all values shown below are for BRD4 BD2). A crystal structure of a close analog suggested several opportunities for further growth to improve potency.



Changing the methyl group to a cyclopropyl group improved selectivity, and introducing a hydroxymethyl substituent off the phenyl ring (compound 44a) improved potency for BD2. This molecule was fairly lipophilic, so the researchers explored adding a variety of polar substituents to improve solubility, ultimately resulting in GSK340.

GSK340 was profiled against 35 bromodomains and found to be at least 40-fold selective for the BD2 domain compared to the BD1 domain of the four BET family members. It showed the highest affinity for BRD4 but also bound tightly to the BD2 domains of BRD2, BRD3, and BRDT and was selective against non-BET family bromodomains. The compound was cell permeable and inhibited the release of the inflammatory cytokine MCP-1, supporting the notion that BD2 domain inhibition alone could have useful anti-inflammatory effects. Unfortunately GSK340 shows sufficiently high clearance in rat and human hepatocytes that the researchers suggest its utility will be limited to in vitro assays. Still, this paper provides another illustration that – with the help of creative medicinal chemistry – a generic, non-specific fragment can lead to a novel and selective chemical probe.

No comments: