Protein-protein disruptions are notoriously difficult
because the interfaces between proteins tend to be large and flat, with few of
the deep pockets where small molecules prefer to bind. That's not to say
they're impossible: the second approved fragment-derived drug targets a
protein-protein interaction. This interaction, as with most others studied (see
here, here, and here, for example), is transient: two proteins come together to
transmit a biological signal, then dissociate. But many proteins form
constitutive dimers or oligomers, and these tend to be even more challenging to
disrupt. This is the class of targets discussed in a paper just published in J. Am. Chem. Soc.
Wei-Guang Seetoh and Chris Abell (University of Cambridge)
were interested in the protein kinase CK2, a potential anti-cancer target. The
enzyme is a tetramer containing two identical catalytic subunits (CK2α) and two
identical regulatory units (CK2β). Previous experiments had shown that introducing
mutations into CK2β that disrupted dimer formation decreased enzymatic activity
and increased protein degradation. Would it be possible to find small molecules
that did this?
Chris Abell is a major proponent of the thermal shift assay,
in which a protein is heated in the presence of a dye whose fluorescence changes
when it binds to denatured protein. The way this assay is normally conducted,
small molecules are added, and if they bind to the protein they stabilize it,
thus increasing the melting temperature (see here for an interesting
counterexample).For oligomeric proteins, one might expect that anything that
disrupts the oligomers would destabilize the proteins, thus lowering the
thermal stability, and indeed this turned out to be the case in a couple model
systems. Thus, the researchers screened dimeric CK2β against 800 fragments,
each at the (very high) concentration of 5 mM. No fragments significantly
increased the melting temperature, but 60 decreased the stability by at least
1.5 °C.
Best practice for finding fragments includes using multiple
orthogonal methods, so all 60 hits were tested (at 2 mM each) in three
different ligand-detected NMR assays: STD, waterLOGSY, and CPMG. Impressively,
40 of these showed binding in all three assays. There was no correlation
between the binding affinity and the magnitude of thermal denaturation, which
is not surprising because the thermal shift incorporates not just the enthalpy
change of ligand binding but also the enthalpy change of protein unfolding.
Thus, as the researchers note, “the extent of thermal destabilization cannot be
used as a measure of its binding affinity.”
Next, all 40 confirmed fragments were tested at 2 mM to see
whether they caused CK2β dimer dissociation, as assessed by native state
electrospray ionization mass spectrometry (ESI-MS). 18 fragments shifted the
equilibrium to monomeric protein, though interestingly no protein-fragment
complexes could be observed. These 18 fragments also decreased dimerization in
an isothermal titration calorimetry (ITC) assay.
No comments:
Post a Comment