03 December 2018

Fragments vs lectins - allosterically

Carbohydrates are ubiquitous in nature but largely ignored in drug discovery. This is because interactions between carbohydrates and proteins, while important, tend to be quite weak; sugar binding sites in proteins rarely have deep, ligandable binding pockets. The few case studies we’ve highlighted (here, here, and here) have resulted in weak and/or large ligands.

However, you don’t need to target the active site to inhibit a protein: one of the most advanced fragment-derived drugs in the clinic is an allosteric inhibitor. Recognizing that many proteins contain secondary (and potentially allosteric) binding sites, Marc Nazaré (Leibniz Forschungsinstitut für Molekulare Pharmakologie), Christoph Rademacher (Max Planck Institute) and collaborators at Freie Universität Berlin and Berlin Institute of Health set out to find some, as they report in a recent paper in J. Am. Chem. Soc.

The researchers were interested in the protein langerin, a C-type lectin receptor involved in pathogen recognition. They screened the extracellular domain against a total of 871 fragments using a combination of NMR methods: STD, T2-filtered, and 19F NMR. A total of 78 fragments confirmed in at least two of these assays, of which 53 also confirmed by SPR. Three of these fragments inhibited the binding interaction between langerin and the polysaccharide mannan.

Next, the researchers acquired or synthesized more than a hundred derivatives of the active fragments and tested them in their battery of assays. Throughout the process they were careful to look for and exclude compounds that showed bad behavior such as aggregation or instability.

Ultimately, the best compounds showed triple-digit micromolar affinity by SPR and double-digit micromolar inhibition in the mannan-binding assay. Interestingly, these compounds do appear to be allosteric: they reduce the affinity of langerin towards mannan but don’t appear to directly block binding. Moreover, two-dimensional (HSQC) NMR studies suggest that the compounds bind to a different binding site on the protein than the carbohydrate does.

Of course there is still a long way to go: the compounds are far too weak to be useful chemical probes at this point. Still, this is a nice tour-de-force of biophysics. And perhaps – as we’ve seen before – someone else will be able to improve the potency of these molecules.

No comments: