Certain targets seem to be particularly popular with fragment-based methods, perhaps in part because they are recalcitrant to other approaches. One of these is the Alzheimer’s target BACE, as described in a post earlier this year on work from Schering-Plough (Merck). Now, in a recent issue of Bioorg. Med. Chem. Lett., James Madden and colleagues at Evotec describe their approach to this challenging protease.
The researchers started by screening their 20,000-fragment library in a functional assay at 1 mM, an endeavor that led to a number of hits, some of which were confirmed by surface plasmon resonance and crystallography. One of these, Compound 3 (see Figure), bore some resemblance to and bound in a similar fashion as a compound previously reported in the literature. The researchers were able to use the binding mode of this other compound to help them improve their fragment. After a couple cycles of synthesis, assays, and crystallography, the researchers arrived at compound 14.
The final molecule shows a 100-fold improvement in potency over the initial fragment and some cellular activity, and the researchers were able to maintain ligand efficiency throughout optimization, albeit at lower values than some previously reported molecules. However, the final compound is still relatively weak, and there is no information on brain penetration. Moreover, it shows activity against hERG, leading Evotec to deprioritize this series. Still, the paper is an easy read and a clear example of what has been called “fragment-assisted drug discovery,” in which traditional medicinal chemistry approaches (in this case borrowing from a competitor compound) are applied along with fragment methods to generate new molecules.
No comments:
Post a Comment