Seth Cohen and coworkers at University of California San Diego and the Weizmann Institute of Science in Israel designed two libraries based on known zinc chelators: quinoline sulfonamides (QSL) and benzimidazole sulfonamides (BISL) (see Figure). They rapidly assembled 40 of the former and 37 of the later using microwave chemistry and tested these against a handful of different MMPs.

Both libraries produced hits against MMP-2, MMP-3, MMP-8, and MMP-9. Control compounds designed not to chelate zinc showed no activity, and X-ray adsorption fine structure spectroscopy experiments suggest that the molecules are indeed binding to the catalytic zinc. Selectivity is often an issue in targeting metalloproteinases, and it was thus gratifying to find that at least one fragment inhibited MMP-2 with low micromolar activity while showing no activity against the other MMPs. Molecular modeling provides some rationale for this selectivity.
One could argue that many of the library members do not meet conventional definitions of fragments, and could be seen as more scaffold-like (or worse – one has a molecular weight pushing 600 Daltons!) And of course, it is not clear that either scaffold will be suitable for drug development or even tool compounds – it is possible their propensity for zinc binding will be a problem inside cells. Still, the notion of creating custom-made fragment libraries for various classes of targets certainly makes sense; folks have done this for kinases and even RNA, and it is reasonable to see this approach extended to metalloproteinases. Cohen and colleagues described a fragment library consisting of more conventional metal chelators earlier this year in ChemMedChem.
This publication also confirms the results of our poll that fragment-based approaches are catching on in academia. But industry is already in the sandbox: at least two companies, AnCore and Viamet, are using similar strategies to target metalloproteins.