04 February 2019

Taking a step towards STEP activators

Most drugs – and small molecule modulators in general – inhibit something, often an enzyme. Enzyme activation, on the other hand, is rare; we’ve highlighted just a few cases on Practical Fragments over the past decade. A new example is described in J. Med. Chem. by Christofer Tautermann and collaborators at Boehringer Ingelheim and the Beckman Research Institute of the City of Hope.

The researchers were interested in the protein tyrosine phosphatase non-receptor type 5 (PTPN5), also known as striatal-enriched protein tyrosine phosphatase (STEP). As its name suggests, this enzyme is found in the brain, and has been implicated in multiple neuropsychiatric disorders. However, phosphatases are tough targets due to their small, polar active sites. The problem is exacerbated for CNS targets, because negatively charged molecules have a hard time crossing the blood-brain barrier. Thus, the researchers sought allosteric modulators.

They began with a screen of 3083 fragments using STD NMR, differential scanning fluorimetry, and microscale thermophoresis. Validation of the several hundred hits by 2-dimensional NMR confirmed just seven, and comparison of the protein chemical shifts with those caused by a non-specific active site binder (sodium vanadate) suggested that compound 2 bound outside the active site. Crystallography confirmed this, revealing that the compound binds on the “back side” of the protein, about 20 Å from the catalytic pocket. The affinity was extraordinarily weak, with no functional activity, so the researchers used NMR to drive the SAR. Ultimately this led to fragment-sized BI-0314, with measurable affinity by isothermal titration calorimetry (ITC). Crystallography revealed that it binds in the same pocket as compound 2.

Surprisingly, far from being an inhibitor, BI-0314 actually showed activation of the enzyme in functional assays, increasing the activity by up to 60% at 0.5 mM. Careful mechanistic analysis revealed that this was due to an increase of kcat, while the KM for substrate was mostly unchanged. Molecular dynamics simulations suggested that BI-0314 increases the rigidity of the enzyme, and also stabilizes the active conformation. As expected of an allosteric modulator, the molecule was selective for STEP, with no activity (activating or inhibitory) for a couple other phosphatases.

As it turns out, the researchers were actually interested in STEP inhibitors, so they didn’t pursue BI-0314 further. As they note, there is still much to be done to generate a useful chemical probe, in particular improving potency. Laudably, the researchers are making BI-0314 available to other researchers free of charge. Perhaps someone else will be able to take this forward, as we’ve seen for other published fragments. And indeed, as researchers at Novartis have shown with asciminib, the transition from an allosteric binder with no functional activity to an inhibitor is possible – perhaps the same will hold true for an activator. If you are interested in STEP, you now have a new site to explore, and even a well-characterized starting point.

1 comment:

Christofer Tautermann said...

Thank you Dan for taking up this topic to your blog. Indeed, we provide the allosteric activator probe BI-0314 free of charge at https://opnme.com/molecules/bi-0314 (No strings attached!)