Enter fragments. Because fragments have lower complexity than lead-sized (let alone drug-sized) molecules, hit rates from fragment screens tend to be higher. If a binding pocket exists in a protein, a small library of just 1000 fragments or so should produce a good range of hits. In fact, Phil Hajduk and colleagues at Abbott found several years ago that fragment screens predict the success of lead discovery campaigns. In the new paper, Edfeldt and colleagues, all at AstraZeneca, analyzed 36 internal discovery projects where both fragment screens and HTS had been conducted. They used data from the fragment screens to categorize targets into three ligandability bins:
- Low: low hit rate, best affinities > 1 mM, low diversity of hits
- Medium: intermediate hit rate, best affinities 0.1 – 1 mM, some diversity of hits
- High: high hit rate, best affinities < 0.1 mM, high diversity of hits
AstraZeneca is now using fragment-based ligandability screening to help assess which targets to pursue: those with low ligandability are only pursued when the biology is truly compelling. On the flip side, targets that have failed conventional HTS but have high ligandability are reexamined using alternative hit discovery techniques, such as fragment-based methods. This seems like an appealing approach: fragments not only help drug hunters avoid throwing out the baby with the bathwater, but also to avoid drowning in dirty bathwater. I wonder how many other companies are using similar strategies.
Hi Dan - This is a nice survey of AZ's internal FBLD, and like Phil Hajduk's referenced paper, underlines the importance (and advantages) of conducting real experiments as part of target assessment. We tried to use computational tools to predict the likelihood of what we would call "crystallographic ligandability" (see Doug's MIE book chapter). But this method was far from perfect, and never as informative as simply trying new targets out with a subset of our library.
ReplyDeleteQuestion: what is the "fast-follower" strategy?
- db
Hi Darren,
ReplyDeleteI agree; nothing beats empiricism!
"Fast follower" is sometimes also called "patent busting." The idea is to take published patent applications from competitors, make some of the best compounds, and then med-chem into novel chemical space. This can be very effective: the current HIV protease inhibitors, for example, are far more effective than the first generation compounds.